Special-purpose chip reduces power consumption of public-key encryption by 99.75 percent, increases speed 500-fold.
Most sensitive web transactions are protected by public-key cryptography, a type of encryption that lets computers share information securely without first agreeing on a secret encryption key.
Public-key encryption protocols are complicated, and in computer networks, they’re executed by software. But that won’t work in the internet of things, an envisioned network that would connect many different sensors — embedded in vehicles, appliances, civil structures, manufacturing equipment, and even livestock tags — to online servers. Embedded sensors that need to maximize battery life can’t afford the energy and memory space that software execution of encryption protocols would require.
MIT researchers have built a new chip, hardwired to perform public-key encryption, that consumes only 1/400 as much power as software execution of the same protocols would. It also uses about 1/10 as much memory and executes 500 times faster. The researchers describe the chip in a paper they’re presenting this week at the International Solid-State Circuits Conference.