Stronger security for smart devices
Researchers demonstrate two security methods that efficiently protect analog-to-digital converters from powerful attacks that aim to steal user data.
Adam Zewe | MIT News Office
Researchers are pushing to outpace hackers and develop stronger protections that keep data safe from malicious agents who would steal information by eavesdropping on smart devices.
Much of the work done to prevent these “side-channel attacks” has focused on the vulnerability of digital processors. For instance, hackers can measure the electric current drawn by a smartwatch’s processor and use it to reconstruct secret data being processed, such as a password.
Recently, MIT researchers published a paper in the IEEE Journal of Solid-State Circuits, which demonstrated that analog-to-digital converters in smart devices, which encode real-world signals from sensors into digital values that can be processed computationally, are susceptible to power side-channel attacks. A hacker could measure the power supply current of the analog-to-digital converter and use machine learning to accurately reconstruct output data.